Init commit.

This commit is contained in:
sleepwithoutbz
2025-05-27 15:15:24 +08:00
commit 79ae3fec86
15 changed files with 29046 additions and 0 deletions

129
ai_analysis.py Normal file
View File

@@ -0,0 +1,129 @@
import os
import json
import glob
from openai import OpenAI
from typing import Dict, List, Any
class ContentParser:
def __init__(
self,
target_keys: str,
api_key: str,
base_url: str = "https://dashscope.aliyuncs.com/compatible-mode/v1",
model: str = "gpt-3.5-turbo",
):
"""
初始化解析器
:param target_keys: 需要提取的目标键列表
:param api_key: 大模型API密钥
:param model: 使用的大模型名称
"""
self.client = OpenAI(
api_key=api_key,
base_url=base_url,
)
self.target_keys = target_keys
self.log = open("name.log", "w", encoding="utf-8")
def process_directory(self, directory: str, recursive: bool = True):
"""
处理目录中的所有文件
:param directory: 要处理的目录路径
:param recursive: 是否递归处理子目录
"""
results = []
# 遍历目录
pattern = "**/*" if recursive else "*"
for filepath in glob.glob(
os.path.join(directory, pattern), recursive=recursive
):
if os.path.isfile(filepath):
_, ext = os.path.splitext(filepath)
if ext == ".json":
try:
result = self._process_json(filepath)
if result:
results.append({"file": filepath, "description": result})
if self._check_related(result):
self.log.write(f"{filepath}\n")
# self._analyze_with_ai(result)
except Exception as e:
print(f"处理文件 {filepath} 时出错: {str(e)}")
return
def _process_json(self, filepath: str) -> str:
"""处理JSON文件"""
with open(filepath, "r", encoding="utf-8") as f:
data = json.load(f)
return self._extract_values(data)
def _extract_values(self, data: Dict) -> str:
"""从数据中提取目标值,支持嵌套查询"""
parts = self.target_keys.split(".")
value = data
try:
for part in parts:
if isinstance(value, list):
value = value[int(part)]
else:
value = value.get(part, None)
if value is None:
break
return value.__str__()
except (KeyError, IndexError, TypeError):
return ""
return ""
def _check_related(self, text: str) -> bool:
keywords = ["docker", "namespace", "cgroup"]
text = text.lower()
return any(keyword in text for keyword in keywords)
def _analyze_with_ai(self, data: str):
prompt = """
请分析下面用户从文件中提取的数据,给出总结报告:
分析要求:
1. 分析这个CVE信息是否与Linux、Kernel相关
2. 如果满足与Linux、Kernel相关分析是否与namespace、cgroup、container或者容器、隔离相关
3. 如果不满足1、2两个条件直接输出“非相关CVE”不需要附带任何其他内容
4. 如果满足1、2两个条件直接输出“可疑CVE”不需要附带任何其他内容
"""
try:
completion = self.client.chat.completions.create(
# 模型列表https://help.aliyun.com/zh/model-studio/getting-started/models
model="qwen-plus",
messages=[
{"role": "system", "content": prompt},
{
"role": "user",
"content": data,
},
],
# Qwen3模型通过enable_thinking参数控制思考过程开源版默认True商业版默认False
# 使用Qwen3开源版模型时若未启用流式输出请将下行取消注释否则会报错
# extra_body={"enable_thinking": False},
)
print(completion.model_dump_json())
except Exception as e:
print(f"调用大模型失败: {str(e)}")
if __name__ == "__main__":
# 配置参数
CONFIG = {
"target_keys": "containers.cna.descriptions.0.value",
"api_key": "sk-5ec7751941974a9cb5855f746fe45a62",
"directory": "./data",
"recursive": True,
}
# 创建解析器实例
parser = ContentParser(target_keys=CONFIG["target_keys"], api_key=CONFIG["api_key"])
# 开始处理
parser.process_directory(
directory=CONFIG["directory"], recursive=CONFIG["recursive"]
)